Chemical Reactions and Enzymes

(Pages 49 – 59)
Chemical Reactions

• Chemistry of Life
 – Not just what life is made of.
 – What life does!
Chemical Reactions

• Chemistry of Life
 – Not just what life is made of.
 – What life does!

• What is a chemical reaction?
 – Process that changes one set of chemicals into another set of chemicals.
Chemical Reactions

- Contain two components:
 - Reactants: Elements that enter a reaction.
 - Products: Elements produced by a reaction.
Chemical Reactions

• Contain two components:
 – Reactants: Elements that enter a reaction.
 – Products: Elements produced by a reaction.

• Always involves breaking old bonds and forming new bonds.

\[
\text{CO}_2 + \text{H}_2\text{O} \quad \rightarrow \quad \text{H}_2\text{CO}_3 \\
\quad \text{(Blood)}
\]

\[
\text{H}_2\text{CO}_3 \quad \rightarrow \quad \text{CO}_2 + \text{H}_2\text{O} \\
\quad \text{(Lungs)}
\]
Energy in Reactions

- Chemical reactions involve changes in energy.
 - Formation of bonds = Release of energy
 - Breaking of bonds = Absorbing energy
Energy in Reactions

• Chemical reactions involve changes in energy.
 – Formation of bonds = Release of energy
 – Breaking of bonds = Absorbing energy

• Changes in energy determine whether a reaction will occur.
 – Spontaneous vs Energy source

\[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \]
(Energy released as heat, light, & sound)
Energy in Reactions

• Significance for living things?
 – Carry out rxns that require energy.
 – Must have source of energy.
Energy in Reactions

• Significance for living things?
 – Carry out rxns that require energy.
 – Must have source of energy.
 • Plants?
Energy in Reactions

• Significance for living things?
 – Carry out rxns that require energy.
 – Must have source of energy.
 • Plants?
Energy in Reactions

• Significance for living things?
 – Carry out rxns that require energy.
 – Must have source of energy.
 • Plants?
 • Animals?
Energy in Reactions

• Significance for living things?
 – Carry out rxns that require energy.
 – Must have source of energy.
 • Plants?
 • Animals?
Energy in Reactions

• Not all reactions that release energy occur spontaneously!
 – **Activation energy**: Energy needed to get a rxn started.
 – Ex: Heat source
Energy in Reactions: Enzymes

• What if rxns in living things are TOO SLOW or have TOO HIGH activation energies?
Energy in Reactions: Enzymes

• What if rxns in living things are TOO SLOW or have TOO HIGH activation energies?
 – **Catalysts**: Speed up the rate of a chemical rxn.
 • Enzymes are biological catalysts.
 – Speed up chemical reactions in living cells.
 – Lowers the activation energies.
Energy in Reactions: Enzymes

• What if rxns in living things are TOO SLOW or have TOO HIGH activation energies?
 – **Catalysts:** Speed up the rate of a chemical rxn.
 • Enzymes are biological catalysts.
 – Speed up chemical reactions in living cells.
 – Lowers the activation energies.
Energy in Reactions: Enzymes

• What if rxns in living things are TOO SLOW or have TOO HIGH activation energies?
 – Catalysts: Speed up the rate of a chemical rxn.
 • Enzymes are biological catalysts.
 – Speed up chemical reactions in living cells.
 – Lowers the activation energies.
 – Usually catalyze only one reaction.
Energy in Reactions: Enzymes

- What if reactions in living things are TOO SLOW or have TOO HIGH activation energies?
 - **Catalysts**: Speed up the rate of a chemical reaction.
 - Enzymes are biological catalysts.
 - Speed up chemical reactions in living cells.
 - Lower the activation energies.
 - Usually catalyze only one reaction.

\[
\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3
\]
Energy in Reactions: Enzymes

- What if rxns in living things are **TOO SLOW** or have **TOO HIGH** activation energies?
 - **Catalysts:** Speed up the rate of a chemical rxn.
 - Enzymes are biological catalysts.
 - Speed up chemical reactions in living cells.
 - Lowers the activation energies.
 - Usually catalyze only one reaction.

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \]
- Carbonic anhydrase speeds up this rxn 10 million times faster
Enzyme Action

• How do enzymes work?
 – Biological “matchmaking”.
 • Provide a site for reactants to come together and react (break old bonds / form new bonds).
Enzyme Action

• How do enzymes work?
 – Biological “matchmaking”.
 • Provide a site for reactants to come together and react (break old bonds / form new bonds).
 – **Enzyme–Substrate Complex**
 • Reactants = Substrates
 • Bind to active site.
 – Have specific complementary shapes (ie~ lock and key).
Enzyme Action

• How do enzymes work?
 – Biological “matchmaking”.
 • Provide a site for reactants to come together and react (break old bonds / form new bonds).
 – Enzyme–Substrate Complex
 • Reactants = Substrates
 • Bind to active site.
 – Have specific complementary shapes (ie~ lock and key).
 • Substrates remain bound during reaction, and products are released once finished.
Enzyme Action

• How do enzymes work?
 – Biological “matchmaking”
 • Provide a site for reactants to come together and react (break old bonds / form new bonds).

 – Enzyme–Substrate Complex
 • Reactants = Substrates
 • Bind to active site.
 – Have specific complementary shapes (ie~ lock and key).
 • Substrates remain bound during reaction, and products are released once finished.

 – Can be affected by many variables
 • ie~ pH or temperature
Enzyme Action

• How do enzymes work?

• Regulate chemical pathways, make materials cells need, release energy, & transfer information.